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1. Introduction and motivation

Lagrangian methods/schemes

D

Dt
() =

∂

∂t
() + v∇()

[1] J. Von Neumann, R. D. Richtmyer. A method for the numerical calculation of
hydrodynamic shocks.J. Applied Physics 21 (1950) 232-237.

Advantages

availability of trajectory information;

less numerical diffusion, no mass flux btw cells;

mesh moves with fluid velocity;

material interfaces are precisely located and identified.

Drawbacks

high computational cost, update mesh at each ∆t;

mesh distortion, cell integrity, ∆t → 0.
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1. Introduction and motivation

Lagrangian methods (brief overview)
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2. Gasdynamics/Hyperelasticity model in Lagrangian
formulation

Updated Lagrangian framework

Lagrange-Euler mapping Φ : X 7−→ x = Φ(X , t)

t=0

t>0

ω (t)

Ω
d

d
xF= ΦX X

xΦ

X

Xd= F

Lagrange-Euler mapping Φ relating a material Lagrangian point X at t = 0 and a
spatial Eulerian one x at t > 0.

Ω −→ ω(t) Computational domains
F(X , t) = ∇XΦ(X , t) Deformation gradient
J(X , t) = det (F(X , t)) Determinant of F
F(X , t = 0) = Id , J(X , t = 0) = 1 Continuity J(X , t) > 0
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2. Gasdynamics/Hyperelasticity model in Lagrangian
formulation

Updated Lagrangian framework

Lagrangian/Eulerian expressions

G (X , t): Lagrangian representation and g(x , t) the Eulerian one of the
same physical quantity, then

g(x , t) = G
(
Φ−1(x , t), t

)
and G (X , t) = g (Φ(X , t), t) .

Time differentiation

Holding X fixed, the kinematic velocity is

v(X , t) =
∂Φ

∂t
|X (X , t).

The Lagrangian time derivative is the material time derivative

dg

dt
(x , t) =

∂g

∂t
(x , t) + v · ∇xg .
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2. Gasdynamics/Hyperelasticity model in Lagrangian
formulation

Updated Lagrangian framework

Measures of deformation

The stretching of an infinitesimal fiber dX maps into dx = FdX .

Right Cauchy-Green tensor: C = FtF

dx · dx − dX · dX = (C− Id)dx · dx .

Left Cauchy-Green tensor: B = FFt

dx · dx − dX · dX = (Id − B−1)dX · dX .

Remarks

B and C are symmetric positive definite and share the same eigenvalues.
For rigid rotation they collapse to Id.
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2. Gasdynamics/Hyperelasticity model in Lagrangian
formulation

Geometric Conservation Law (GCL)

Time differentiation of F = ∇XΦ (deformation gradient) leads to the GCL.

Total Lagrangian formulation

∂F
∂t
−∇Xv = 0, v =

∂Φ

∂t
.

Curl compatibility constraint:

∇X × F = 0 (1)

ensures F = gradient of a mapping.

Updated Lagrangian formulation

dF
dt
− LF = 0, L = ∇xv .

Time rate of change of B = FFt :

dB
dt

=
dF
dt

Ft+F
dFt

dt
⇒ dB

dt
−LB−BLt = 0

Remarks

(1) is an involution constraint for the GCL. True at t = 0⇒ true ∀t.

Discrete satisfaction of (1) is a key point for any total Lagrangian scheme.

Updated Lagrangian equation for Jacobian yields

dJ

dt
− Jtr(L) = 0 =⇒

dJ

dt
− J∇x · v = 0
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2. Gasdynamics/Hyperelasticity model in Lagrangian
formulation

Governing equations

Lagrangian conservation laws

ρ
dτ

dt
−∇ · v = 0,

ρ
dv

dt
−∇ · T = 0,

ρ
de

dt
−∇ · (Tv) = 0,

dx

dt
= v(x(t), t),

d/dt → material derivative
τ = 1

ρ > 0 → specific vol., mass density

v → fluid velocity
T → sym. Cauchy stress tensor
e = ε+ 1

2v
2 → specific total energy

ε > 0 → specific internal energy
x(0) = X

Closure law – Constitutive law for T
Law expressing the Cauchy stress tensor T in terms of deformation and a
thermodynamic variable.
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2. Gasdynamics/Hyperelasticity model in Lagrangian
formulation

Constitutive law for gas-dynamics

For gas-dynamics we consider

T ≡ T(ρ, ε) = −p(ρ, ε)Id,

with p the so-called pressure given by an Equation-Of-State (EOS) which
depends on the considered ’material’

Equation of state (EOS)

Perfect gas: Mono-atomic γ = 5/3, Diatomic γ = 7/5, Ammonia γ = 1.32

p = (γ − 1)ρε, γ =
CP

CV
> 1 material-dependent parameter

Stiffened gas:

p = (γ− 1)ρε− γΠ∞, γ =
CP

CV
> 1,Π∞ material-dependent param.

Mie-Grunüneisen...
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2. Gasdynamics/Hyperelasticity model in Lagrangian
formulation

Constitutive law for isotropic materials (TB = BT)

Free energy potential: Ψ ≡ Ψ(B, θ)

Introduce free energy:

Ψ = ε− θη ≡ Ψ (I1(B), I2(B), I3(B), θ) ,

thanks to Theorem of representation of isotropic scalar function, where
θ > 0, η are the absolute temperature and specific entropy, with Ik are the
principal invarianta. of B

aI1(B) = tr(B), I2(B)) = 1
2

[
tr2(B) − tr(B2)

]
, I3(B) = det(B)

Cauchy stress tensor: T(B, θ) = 2ρ
(
∂Ψ
∂B
)
θ
B

Differentiation of Ψ w.r.t. B leads to(
∂Ψ
∂B
)
θ

=
(
∂Ψ
∂I1

)
θ
Id +

(
∂Ψ
∂I2

)
θ

(I1Id − B) +
(
∂Ψ
∂I3

)
θ
I3B−1.

Substitution into the constitutive law results in

T = 2ρ

{
I3

(
∂Ψ

∂I3

)
θ

Id +

[(
∂Ψ

∂I1

)
θ

+ I1

(
∂Ψ

∂I2

)
θ

]
B−

(
∂Ψ

∂I2

)
θ

B2

}
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2. Gasdynamics/Hyperelasticity model in Lagrangian
formulation

Volumetric shear strain decomposition

Decomposition of F:
J

1
3 Id → volumetric part

F = J−
1
3F → isochoric part

The free energy is now expressed as (B = J−
2
3B and I k ≡ Ik(B))

Ψ ≡ Ψ(J, I1(B), I2(B), θ) = Ψv (J, θ) + Ψs(I 1, I 2, θ).

Ψv ,Ψs are the volumetric and shear parts of the free energy.

Decomposition of the Cauchy stress tensor

T = ρJ

(
∂Ψv

∂J

)
θ︸ ︷︷ ︸

=p volumetric

Id + 2ρ

[(
∂Ψs

∂I 1

)
θ

B0 −
(
∂Ψs

∂I 2

)
θ

(B−1
)0

]
︸ ︷︷ ︸

=T0 deviatoric
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2. Gasdynamics/Hyperelasticity model in Lagrangian
formulation

Examples of constitutive laws

Pressure and internal energy → classical thermodynamical relations

p(τ, θ) = −ρ0

(
∂Ψv

∂J

)
θ

, εv (J, θ) = Ψv (J, θ)− θ
(
∂Ψv

∂θ

)
J

.

Volumetric free energy

Ψv =
µ

4ρ0

(
(J − 1)2 + (log J)2

)
⇒ p = −µ

2

(
J − 1 +

log J

J

)
,

use the siffened gas or any but convex EOS to ensure hyperbolicity.

Deviatoric (shear part) free energy: Rank-one convex stored energies

Ψs(I 1, I 2) =
µ

4ρ0

[
−2a(I 1 − 3) +

(1 + a)

3
(I

2
2 − 9)

]
, a ∈ [−1; 0.5].

a = −1 → Neo-Hookean model Ψs = µ
2ρ0 (I 1 − 3), Gavrilyuk et al., J. of Elasticity, 2015

a = 0 → Non-linear law Ψs = µ
12ρ0 (I

2
2 − 1)

Relation shear modulus as Young modulus and Poisson ration: µ = E/(2 (1 + ν)).
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3. Cell-centered finite volume scheme on unstructured grids

Mesh and geometry - Unstructured simplex

ω(t) → computational domain in dimensions d ∈ [2, 3]
∂ω(t) → boundary of ω(t) in d − 1
n → outward pointing unit normal vector

c/p index for cell/point

T n
ω =

NE⋃
c=1

ωn
c current mesh

F(c)/P(c) set of faces/points of c

ω
n/n+1
c current/updated cell
ωn
cp subcell
C(p)/F(p) set of cells/faces

of point p

O

1

1

1

ξ

ζ

η

ωe

px

fx

px

fx

c
x

x
e

y

x

z

ω
c

subce ll
ω

pccell 

nf

n

n

Left: Reference element ωe in ξ = (ξ, η, ζ) coord. Right: cell ωc and subcell ωpc .
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3. Cell-centered finite volume scheme on unstructured grids

Discrete velocity gradient operator

Fundamental geometrical object: corner normal vector

apcnpc =
∂|ωc |
∂xp

, such that
∑

p∈P(c)

apcnpc = 0.

Interesting geometrical identity:
∑

p∈P(c)

apcxp ⊗ npc = |ωc |Id.

Discrete velocity gradient/divergence operators

Application of Gauss theorem to ∇v yields

Lc(v) =
1

|ωc |

∫
∂Ωc

v ⊗ n ds =
1

|ωc |
∑

p∈P(c)

apcvp ⊗ npc

Taking the trace yields the discrete cell-centered divergence

tr [Lc(v)] =
1

|ωc |
∑

p∈P(c)

apcvp · npc .
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3. Cell-centered finite volume scheme on unstructured grids

Subcell force

The masses of cell/subcell are constant in time:

mpc =

∫
Ωpc

ρ0(X ) dV , mc =

∫
Ωc

ρ0(X ) dV =
∑

p∈P(c)

mpc .

Fundamental physical object: The subcell force fpc → traction force
exerted on the outer boundary of subcell ωpc .

The derivation starts from integration over ωc of the momentum equation:

mc
dvc
dt
−
∫
∂ωc

Tn ds = mc
dvc
dt
−
∑

p∈P(c)

∫
∂ωpc∩∂ωc

Tnds︸ ︷︷ ︸
≡ fpc

= 0
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3. Cell-centered finite volume scheme on unstructured grids

Semi-discrete scheme for Lagrangian hyperelasticity

Physical PDEs ”Extra” PDEs

mc
dτc
dt
−
∑

p∈P(c)

apcnpc · vp = 0,
dxp
dt

= vp, mc = constant

mc
dvc
dt
−
∑

p∈P(c)

fpc = 0
dBc

dt
− LcBc − BcLt

c = 0

mc
dec
dt
−
∑

p∈P(c)

fpc · vp = 0 Bc = FcFt
c , Lc = (∇xv)c

Nodal solver [Maire, JCP, 2009]: compute nodal velocity vp∑
c∈ C(p)

Mpcvp =
∑

c∈ C(p)

Mpcvc −
∑

c∈ C(p)

apcTcnpc , Mpc =
∑

f∈F(pc)

zf Af nf ⊗ nf .

Ensures momentum/energy conservation and thermodynamic compatibility

Hydrodynamics: zf ≡ zc = ρcac . Hyper-elasticity zf ≡ zc = ρc

√
a2
c +

4

3

µc

ρc
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3. Cell-centered finite volume scheme on unstructured grids

Space-time ADER scheme

1 Knowledge of the geometry xn and variables Qc = (τc , vc , ec ,Bc)n at time tn

2 Nodal solver:∑
c∈ C(p)

Mpcv
∗
p =

∑
c∈ C(p)

Mpcv
∗
c − anpcT∗cnn

pc , Mpc =
∑

f∈F(pc)

z∗f An
f n

n
f ⊗ n

n
f

3 Subcell force: f ∗pc = anpcT∗cnn
pc + Mpc(v∗p − v∗c )

4 Update geometry: xn+1
p = xn

p + ∆t v∗p

5 Update physical variables:

τn+1
c = τnc +

∆t

mc

∑
p∈P(c)

ãpcnpc · v∗p , ãpcnpc =
1

∆t

∫ tn+1

tn
apc npc dt

v
n+1
c = v

n
c +

∆t

mc

∑
p∈P(c)

f
∗
pc , en+1

c = enc +
∆t

mc

∑
p∈P(c)

f
∗
pc · v∗p
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3. Cell-centered finite volume scheme on unstructured grids

Space-time ADER scheme

Space-time 2nd order representations (predictors)

Solution/geometry representation with space-time nodal functions θl(ξ, τ):

qh =
L∑
l=1

θl(ξ, τ)q̂l,c , xh =
L∑
l=1

θl(ξ, τ)x̂l,c , L = 2M, M = d + 1,

with qh = (τ, v , e,B)h.

Space: Unlimited constrained central reconstruction [Dumbser et al, JCP, 2007]

1

|ωn
j |

∫
ωn

j

M∑
l=1

θl(ξ, 0) q̂l,c dv ' Qn
j , Sc =

ne⋃
j=1

ωn
m(j), ∀ωn

j ∈ Sc

1

|ωn
c |

∫
ωn

c

M∑
l=1

θl(ξ, 0) q̂l,c dv = Qn
c . ← constrains
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3. Cell-centered finite volume scheme on unstructured grids

Space-time ADER scheme

Time: ADER scheme [Titarev and Toro, J. Sci. Comput., 2002]

Weak form of the PDEs

tn+1∫
tn

∫
ωc (t)

θk(ξ, τ)

(
dqh

dt
− 1

ρh
∇ · f(qh,∇qh)

)
dv dt = 0,

tn+1∫
tn

∫
ωc (t)

θk(ξ, τ)
dx

dt
dv dt =

tn+1∫
tn

∫
ωc (t)

θk(ξ, τ) v dv dt,

with qh = (τ, v , e,B)h and f(qh,∇qh) = (v ,T,Tv ,LB− BLt)h.

The values at time t∗ in the nodal solver are fed using q∗(x) = qh(x , t∗) for any
space-time coordinate (x , t∗).
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3. Cell-centered finite volume scheme on unstructured grids

Space-time discretization of the geometry equation for B
Time differentiation of Fc

in the Eulerian reference frame
dFc

dt
− 1

|ωc |
∑

p∈P(c)

apc(vp ⊗ npc)Fc = 0 ⇒ dFc

dt
− LcFc = 0.

Crank-Nicolson scheme in [tn, tn+1]

Fn+1
c −Fn

c−
∆t

2
Ln+ 1

2
c (Fn+1

c +Fn
c) = 0, Ln+ 1

2
c =

1

|ωn+ 1
2

c |

∑
p∈P(c)

a
n+ 1

2
pc v

n+ 1
2

p ⊗nn+ 1
2

pc

Ln+ 1
2

c the time-centered approximation of the discrete velocity gradient. Then

Fn+1
c =

(
A−c
)−1 (A+

c

)
Fn
c , A±c = Id ±

∆t

2
Ln+ 1

2
c , ∆t > 0 s.t. det(Ac) > 0.

2nd order update of Bc consistent with discrete Jacobian

Bn+1
c =

(
A−c
)−1 (A+

c

)
Bn
c

(
A+

c

)> (A−c )−>
preserves symmetry and ≥ 0 definiteness of the left Cauchy-Green tensor.

Raphaël Loubère Cell-centered ADER-MOOD Lagrangian schemes 16 / 34



3. Cell-centered finite volume scheme on unstructured grids

A posteriori MOOD limiter [Clain et al., JCP, 2011]

ADER
Nodal
Solver

MOOD

Troubled cells

Detection
criteria

Decrement
lim or d=0

Q
FV SOLVER

LAGRANGIAN

Piecewise linear

Reconstruction

Cell centeredQc

n

c

n+1

c
a
n
d
id

a
te

 s
o
lu

ti
o
n

A
d
m

is
s
ib

le
 c

e
ll

s

Sketch of the current Lagrangian numerical method and
the associated MOOD loop with decrementing: P1 → PLIM

1 → P0
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3. Cell-centered finite volume scheme on unstructured grids

A posteriori MOOD limiter [Clain et al., JCP, 2011]

1 P1: Accuracy is gained with the unlimited piecewise-linear polynomial
reconstruction: maximal second-order of accuracy, possibly oscillating;

2 Plim
1 : Robustness is gained with the previous reconstruction supplemented

with Barth-Jespersen (BJ) slope limiter: between first- and second-order of
accuracy, essentially-non-oscillatory;

3 P0: Fail-safe is gained without any polynomial reconstruction: first-order of
accuracy, robust but dissipative.

Numerical admissibility Relaxed Discrete Maximal Principle δ0 = 10−4, δ1 = 10−3

−δnc +mn
c ≤ ρ∗,n+1

c ≤ Mn
c +δnc , with

{
δnc = max(δ0, δ1|Mn

c −mn
c |),

mn
c = mind∈Vc (ρnd), Mn

c = maxd∈Vc (ρnd)

Physical admissibility: τc > 0, εc > 0, θc > 0. Can add |ωcp| > 0.

Computer admissibility: no NaN, Inf
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3. Cell-centered finite volume scheme on unstructured grids

Time step restrictions

Computation of the time step

∆t = min (∆tvolume, ∆tacoustic, ∆tincrease)

∆tvolume = Cv min
c

 |ωn
c |∑

p∈P(c)

apcnpc · vp

 , Cv = 0.2

∆tacoustic = CCFL min
c

(
Lc

zc/ρc

)
, zc/ρc =

√
a2
c +

4

3

µc
ρc

∆tincrease = Ci (t
n − tn−1), Ci = 0.1 CCFL = 0.25
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4. Numerical results in hydrodynamics
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4. Numerical results in hydrodynamics

Numerical convergence studies – Kidder problem

Isentropic compression of a shell (perfect gas) with exact solution 2D/3D

2D Pressure Radius
h(Ω(tfinal)) εL1 O(L1) εL2 O(L2) εL∞ O(L∞) εRint

O(Rint) εRext O(Rext)
2.40E-02 2.71E+00 - 6.06E+00 - 2.24E+01 - 2.01E-02 - 5.84E-02 -

1.37E-02 9.34E-01 1.9 2.56E+00 1.5 1.61E+01 0.6 1.57E-02 0.4 5.55E-02 0.1

4.51E-03 5.72E-02 2.5 2.10E-01 2.2 2.79E+00 1.6 2.50E-03 1.7 8.77E-03 1.7

3D Pressure Radius
h(Ω(tfinal)) εL1 O(L1) εL2 O(L2) εL∞ O(L∞) εRint

O(Rint) εRext O(Rext)
2.18E-02 3.57E+00 - 7.47E+00 - 5.55E+01 - 3.93E-02 - 1.35E-01 -

1.66E-02 2.34E+00 1.6 5.08E+00 1.4 4.68E+01 0.6 2.65E-02 1.5 1.31E-01 0.1

1.20E-02 1.11E+00 2.3 2.76E+00 1.9 3.77E+01 0.7 1.19E-02 2.4 6.74E-02 2.0

Table: Numerical errors and convergence rates with second order of accuracy
Lagrange ADER scheme. The error norms refer to the variable p (pressure) or to
the internal and external radial position at the final time t = tfinal.
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4. Numerical results in hydrodynamics

Numerical convergence studies – Kidder problem
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4. Numerical results in hydrodynamics

Numerical results – Sod explosion problem

Sod ICs in cylindrical (2D, 70k cells) or spherical (3D, 2.5M cells) geometry
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4. Numerical results in hydrodynamics

Numerical results – Sod explosion problem

Density (left), pressure (right) for 1st order (blue) and 2nd order (black)
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4. Numerical results in hydrodynamics

Numerical results – Sod explosion problem

Percent of bad recomputed cells (left: 2D, right:3D)
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4. Numerical results in hydrodynamics

Numerical results – Piston problem

Piston moving from left to right. Initial meshes 9k (2D), 75k (3D) cells
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4. Numerical results in hydrodynamics

Numerical results – Piston problem
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4. Numerical results in hydrodynamics

Numerical results – Piston problem

Multiple rebounds of the shock wave on the right wall and moving piston.
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4. Numerical results in hydrodynamics

Numerical results – Piston problem

Percent of bad cells in 2D (left) and 3D (right)

Very few cells are recomputed =⇒ no cost due to MOOD loop!

More tests in hydro: Sedov explosion (2D/3D), linear phase of Richtmyer-
Meshkov instability, comparisons and validations. Skipped today.
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5. Numerical results in hyper-elasticity - Neo-Hookean model

Outline

1 Introduction and motivation

2 Gasdynamics/Hyperelasticity model in Lagrangian formulation

3 Cell-centered finite volume scheme on unstructured grids

4 Numerical results in hydrodynamics

5 Numerical results in hyper-elasticity - Neo-Hookean model

6 Conclusions and perspectives
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5. Numerical results in hyper-elasticity - Neo-Hookean model

Numerical convergence studies

2D Swinging plate test [Scovazzi et al., IJNME, 2016]. Domain
Ω = [0, 2]2 the smooth solution for the velocity is

v
ex = ωU0 cos(ωt)

(
− sin

(π
2
x
)

cos
(π

2
y
)

cos
(π

2
x
)

sin
(π

2
y
)

)
, ω =

π

2

√
2µ

ρ0
, U0 = 5 · 10−4

m

Material: ρ0 = 1100 kg.m−3, Young’s E = 1.7 · 107 Pa, Poisson ν = 0.45.

Lc(ω(tfinal)) ε(u) O(u) ε(B11) O(B11) ε(T11) O(T11)

7.81E-02 2.144E-03 — 1.581E-04 — 9.681E+02 —

5.21E-02 8.206E-04 2.37 7.072E-05 1.98 4.258E+02 2.03

3.91E-02 4.650E-04 1.97 3.914E-05 2.06 2.343E+02 2.08

3.13E-02 3.085E-04 1.84 2.473E-05 2.06 1.477E+02 2.07

2.60E-02 2.212E-04 1.82 1.699E-05 2.06 1.015E+02 2.06

Expected orders→ 2 2 2

L2 Numerical errors and convergence rates with second order Lagrange ADER scheme

at time tfinal = π/ω. Variables u (horizontal velocity), B11 and T11.
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5. Numerical results in hyper-elasticity - Neo-Hookean model

Elastic vibration of a Beryllium plate

Initial velocity distribution:

v0(x) = Aω
[
a1(sinh(x ′) + sin(x ′))− a2(cosh(x ′) + cos(x ′))

]
, x ′ = α(x+L/2)

Domain: L = 0.06 m
Parameters: α = 78.834 m−1, A = 4.3369× 10−5 m

ω = 2.3597× 105 s−1, a1 = 56.6368 and a2 = 57.6455
Final time : tfinal = 3 · 10−5 s
Material ρ0 = 1845 kg.m−3, E = 3.1827 · 1011 Pa and ν = 0.0539.
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Elastic vibration of a Beryllium plate
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5. Numerical results in hyper-elasticity - Neo-Hookean model

Elastic vibration of a Beryllium plate

Comparison P1 → Plim
1 → P0 vs P1 → P0

Numerical dissipation measure

δ =
Ψ + k − E0

E0
with k0 =, E0 = Ψ0 + k0.

Raphaël Loubère Cell-centered ADER-MOOD Lagrangian schemes 23 / 34



5. Numerical results in hyper-elasticity - Neo-Hookean model

Blake’s problem

Analytical solution is derived from small strain linear elasticity theory [Kamm
et al., TR-LANL, 2009]

Computational needle: ω = [r , θ, φ] = [0.9, π/180, π/180]
Computational mesh: h = 1/Ns with Ns = 1000s cells (s = 1, 2, 3)
Material: ρ0 = 3000 kg.m−3, E = 62.5 · 109 Pa, ν = 0.25.
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5. Numerical results in hyper-elasticity - Neo-Hookean model

Blake’s problem

Left: pressure. Right: Radial deviatoric stress
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5. Numerical results in hyper-elasticity - Neo-Hookean model

Blake’s problem

Left: pressure. Right: Radial deviatoric stress
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5. Numerical results in hyper-elasticity - Neo-Hookean model

Nearly incompressible solid simulations in 3D

Three configurations: twisting column (Left), rebound of a hollow circular
bar (middle) and L-shaped problem (right). Poisson ratio ν = 0.45.
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5. Numerical results in hyper-elasticity - Neo-Hookean model

Twisting column
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5. Numerical results in hyper-elasticity - Neo-Hookean model

Twisting column

Twisting column — Time evolution of non-dimensional height of the column
measured at initial point xT = (0, 0, 6) (left). Percentage of bad cells detected

(right).
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5. Numerical results in hyper-elasticity - Neo-Hookean model
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5. Numerical results in hyper-elasticity - Neo-Hookean model

Rebound of a hollow bar
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5. Numerical results in hyper-elasticity - Neo-Hookean model

Rebound of a hollow bar

Time evolution of vertical displacement of the points on the top plane
xT = (1.6, 0, 32.4) · 10−3m and on the bottom plane xB = (1.6, 0, 4) · 10−3m

(left) and percentage of bad cells detected at each time step (right).

Raphaël Loubère Cell-centered ADER-MOOD Lagrangian schemes 28 / 34



5. Numerical results in hyper-elasticity - Neo-Hookean model

L-shaped problem – Angular momentum conservation
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5. Numerical results in hyper-elasticity - Neo-Hookean model

L-shaped problem – Angular momentum conservation

time
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A = (Ax ,Ay ,Az) =

=

∫
ω

x ×m v dv

≈
∑
c

xc ×mc vc |ωc | = Ac .

Consistency relations εω = ||ωn+1
c | − τn+1

c mc |, εB =
∣∣√detBn+1

c − τ 0
c

τn+1
c

∣∣.
Test case Beryllium plate Thick beam Bar rebound Blake Jelly impact Twisting column

max(εB) 5.86×10−13 3.08×10−13 1.12×10−12 9.85×10−12 4.19×10−12 4.81×10−13
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5. Numerical results in hyper-elasticity - Neo-Hookean model

Impact of a jelly-like droplet – Neo-Hookean vs NL models
[Hank et al., JCP, 2017]
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5. Numerical results in hyper-elasticity - Neo-Hookean model

Impact of a jelly-like droplet – Neo-Hookean vs NL models
[Hank et al., JCP, 2017]

Time evolution of the maximum spreading of the droplet L/L0 in the case
neo-Hookean model (a = −1, black line) or non-linear one (a = 0, red line)

The impact velocity is 2 m.s−1 (left) and 3 m.s−1 (right).
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6. Conclusions and perspectives
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6. Conclusions and perspectives

Conclusions and perspectives

We have presented a

cell-centered Lagrangian finite volume schemes for hyperbolic system
of PDEs (hydro and hyperelasticity);

compatible GCL discretization on unstructured meshes in 2D/3D;

second order of accuracy in space (MOOD) and in time (ADER);

extended validation on benchmarks in gasdynamics and nearly
incompressible solid mechanics.

We have not presented

complete description of BCs, the underlying MPI parallelisation,

exhausive description of the material properties (test cases),

all hidden tricks.

Perspectives

plasticity effects;

high order curvilinear finite volume schemes;

extension to multi-material continuum mechanics.
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6. Conclusions and perspectives

Conferences in 2022?

Braga, PT, HONOM 2022 shark-fv.eu/honom2022/

Povoa de Varzim, PR, SHARK 2022 shark-fv.eu/home-shark/

Malaga, Spain, HYP 2022 hyp2022.com/cms.php
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6. Conclusions and perspectives

Hyper-elasticity versus hypo-elasticity.

Hyperelasticity relies on the definition of a free energy which allows to express the deviatoric
part of the Cauchy stress in terms of the deviatoric part of the left Cauchy-Green tensor. This

framework provides a constitutive law fulfilling

the material frame indifference principle;

the thermodynamic consistency with the second law.

On the other hand, for hypo-elasticity, refer for instance to [47], the constitutive law is written
under incremental form. Namely, the time rate of change of the deviatoric stress is expressed in

terms of the deviatoric part of the strain rate tensor. The enforcement of the principle of
material frame indifference relies on the use of a somewhat arbitrary objective stress rate such as
the Jaumann rate, refer to [35]. Moreover, the use of objective stress rate makes appearing non

conservative terms which render the mathematical analysis of discontinuous solutions quite
delicate. This framework does not allow the fulfillment of thermodynamic consistency. Indeed,

for smooth elastic flows the entropy is not conserved.
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